Ashley Aponik (Yale University)
William Robert Anderson (Wofford College)
Youssef T Daoud (Tennessee Tech University)
The use of cognitive radio, especially when integrated with reinforcement learning algorithms, may help to ease the issue of limited spectrum by finding optimal transmission policies and detecting the presence of other users, especially in a scenario where a primary user and secondary user are contesting for spectrum. This paper presents a testbed for simulating cognitive engines in these networks using a variety of reinforcement learning algorithms, including ε-greedy, Softmax Strategy, and Q-Learning